Fourier multipliers and weak differential subordination of martingales in UMD Banach spaces
نویسندگان
چکیده
منابع مشابه
Stochastic integration in UMD Banach spaces
In these lectures we shall present an introduction of the theory of stochastic integration in UMD Banach spaces and some of its applications. The Hilbert space approach to stochastic partial differential equations (SPDEs) was pioneered in the 1980s by Da Prato and Zabczyk. Under suitable Lipschitz conditions, mild solutions of semilinear SPDEs in Hilbert spaces can be obtained by solving a fixe...
متن کاملMultipliers of pg-Bessel sequences in Banach spaces
In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.
متن کاملWeak symplectic forms and differential calculus in Banach spaces
1Jerrold E. Marsden and Tudor S. Ratiu, Introduction to Mechanics and Symmetry, second ed., Chapter 2. 2Serge Lang, Differential and Riemannian Manifolds, p. 150, Theorem 8.1; Mircea Puta, Hamiltonian Mechanical Systems and Geometric Quantization, p. 12, Theorem 1.3.1. 3Andreas Kriegl and Peter W. Michor, The Convenient Setting of Global Analysis, p. 522, §48; Peter W. Michor, Some geometric ev...
متن کاملFourier Multipliers and Periodic Solutions of Delay Equations in Banach Spaces
In this paper we characterize the existence and uniqueness of periodic solutions of inhomogeneous abstract delay equations and establish maximal regularity results for strong solutions. The conditions are obtained in terms of R-boundedness of linear operators determined by the equations and LFourier multipliers. Periodic mild solutions are also studied and characterized.
متن کاملA Clark-ocone Formula in Umd Banach Spaces
Let H be a separable real Hilbert space and let F = (Ft)t∈[0,T ] be the augmented filtration generated by an H-cylindrical Brownian motion (WH(t))t∈[0,T ] on a probability space (Ω,F ,P). We prove that if E is a UMD Banach space, 1 ≤ p < ∞, and F ∈ D(Ω;E) is FT -measurable, then F = E(F ) + ∫ T 0 PF(DF ) dWH , where D is the Malliavin derivative of F and PF is the projection onto the F-adapted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2018
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm170329-25-8